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 12km gridded observed dataset from 1970 to 1999 from the University of 
Washington (Maurer et al., 2002). 

 50km RCM historical (1970-1999) output from NARCCAP (Mearns et al., 
2009). 

 32km North American Regional Reanalysis (Mesinger et al., 2006). 
 Observed and RCM data remapped using nearest-neighbor algorithm from 

native coordinates and projections to WGC84 projection with 50km resolution. 
 Daily grid point values extracted if within 0.5° of Alabama, Georgia, Mississippi, 

North Carolina, South Carolina, and Tennessee. 
 
 Four method used to quantify model skill: 

 
 

 
  
     
     
 
 
 
 
 
 
 

 PDFs used to determine monthly 
model skill by calculating 
cumulative minimum value of two 
distributions of binned value, 
measuring common area between 
two PDFs (Perkins et al., 2007). 

 Global climate models (GCMs) provide most projections of future climate 
change. But their coarse resolution limits their use in assessing regional climate 
change impacts on water resources, environmental quality, forest management, 
power plant operations, and many other fields. Such assessment requires 
translating global model output to more local scales. This research investigates 
dynamically downscaled regional climate model (RCM) output from the North 
American Regional Climate Change Assessment Program (NARCCAP) in the 
Southeast United States. Analysis includes assessments of GCM and RCM 
performance and skill in the region during a historical reference period (1970-
1999), with explanations of sources and magnitude of individual model bias. 
 
Three fundamental questions structure the research: 
  How skillful are dynamically downscaled models in simulating minimum  
     and  maximum temperature and mean precipitation in a historical  
     reference period  (1970-1999) for the Southeast United States?  
 Does downscaling improve projections at local scales? Is “value added” 
     in downscaling?   
  What are the magnitude of biases for each NARCCAP member (and  
     variable) and what is the potential source of the bias?  
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  Calculate ratio between mean 
absolute error and mean absolute 
deviation about the observed 
mean (Willmott et al., 2011). 

n = number of bins, Zm = frequency of values 
in a bin from model, Z0 = frequency of values 
in a bin from observations. 0 = poor skill, 1 = 
high skill. 

n = number of values, Pi = predicted values, 
Oi = observed values, Ō = observed mean. 
-1 = poor skill, 1 = high skill. 

 Root Mean Square Error (RMSE)  Mean Absolute Error (MAE) 

n = number of bins, yj = observed values, ŷj = modeled values 
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Figure 1: Hovmöller diagram of minimum temperature Perkins skill score (a), 
Willmott’s index of agreement (b), RMSE (c), and MAE (d) for the east sub-region. 
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Figure 2: Hovmöller diagram of maximum temperature Perkins skill score (a), 
Willmott’s index of agreement (b), RMSE (c), and MAE (d) for the east sub-region. 
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Figure 3: Hovmöller diagram of mean precipitation Perkins skill score (a), Willmott’s 
index of agreement (b), RMSE (c), and MAE (d) for the east sub-region. 

Model Key: 
MM5I-CC 
RCM3-GF 
ECP2-GF 
WRFG-CC 
WRFG-CG3 
RCM3-CG3 

 
CRCM-CG3 
CRCM-CC 
GFDL-TS 
CCSM 
GFDL 
CGCM3 

Figure 4: Value added for minimum temperature Perkins skill score (a), Willmott’s 
index of agreement (b), MAE (c), and RMSE (d) for the east sub-region. 
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Figure 5: Value added for maximum temperature Perkins skill score (a), Willmott’s 
index of agreement (b), MAE (c), and RMSE (d) for the east sub-region. 
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Figure 6: Value added for mean precipitation Perkins skill score (a), Willmott’s 
index of agreement (b), MAE (c), and RMSE (d) for the east sub-region. 

Figure 7: Monthly anomalies (RCM values minus observations) of micro-, meso-, 
and synoptic-scale components for grid points from the east sub-region. Black 
boxes on the precipitation minus potential evapotranspiration (P-PE) histograms 
represent a model-predicted surplus of moisture for the respective month (P-PE 
before subtracting from observations). Each histogram begins with the month of 
January and ends with the month of December (x-axis of each histogram).  

Results – Value Added 

 
= MM5I-CCSM 
= RCM3-GFDL 
= ECP2-GFDL 
= WRFG-CCSM 
= WRFG-CGCM3 
= RCM3-CGCM3 

 
= CRCM-CGCM3 
= CRCM-CCSM 
= GFDL-Timeslice 
= CCSM GCM 
= GFDL GCM 
= CGCM3 GCM 

Results – Value Added Introduction 

Data and Methods 

Results – Model Bias 

Conclusions 
   All models relatively skillful in reproducing daily minimum  
      temperature trends for both sub-regions, less overall skill observed  
      for maximum temperature. 
   WRFG RCMs, ECP2-GFDL, and GFDL-timeslice show degradation  
      in skill during summer months while RCM3-GFDL and ECP2-GFDL  
      exhibit degradation in winter (min temperature). RCM3- and ECP2- 
      GFDL exhibit very low skill across all months (max temperature).  
      Most consistently skillful models across all months are RCM3- and  
      CRCM-CGCM3, and MM5I-CCSM. 
   GFDL-timeslice has higher skill and more value added than either  
      RCM run with GFDL LBCs. 
   Mean precipitation model skill (regardless of sub-region) highly  
      dependent on skill metric. 
   Value added by individual ensemble members highly dependent on  
      skill metric and month . For temperature, RCMs driven by the  
      CCSM GCM added most value. Those driven by GFDL added least  
      value (with exception of GFDL-timeslice). For precipitation, WRFG-  
      and RCM3-CGCM3 most consistently added value across all months  
      with MM5I-CCSM adding positive value for least nine months out of  
      year. Models adding least value were CRCM-CCSM and GFDL- 
      timeslice. 
   Comparison of climatological variables at micro-, meso-, and  
      synoptic-scales revealed systematic biases for those models which  
      exhibited less skill. 
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